Pros and Cons of Clinical Prediction Rules
Chad Cook PhD, PT, MBA, FAAOMPT
Program Director
Professor
Vice Chief of Research
Duke Clinical Research Institute
Department of Orthopedics
Duke University

Clinical Prediction Rules

• Clinical prediction rules are algorithmic decision tool (that uses parsimonious clinical findings) designed to aid clinicians in determining a diagnosis, prognosis, or likely response to an intervention.

JMMT 2008
EDITORIAL
Potential Pitfalls of Clinical Prediction Rules
Pros of Clinical Prediction Rules

It is a Sophisticated method to Pattern Results

- Clinical reasoning and treatment decision making methods used by clinicians are highly complex and decisions are rarely based on a single parameter (Boyd, 2011; Kassirer, 2010).
- CPR’s cluster multiple parameters

Clinical Examples?

- SOB + Chest Pressure + Left Arm Pain =
- Elderly women + Fall + Inability to weight bear + ER deformity of the hip =
- LBP + Immobility + Fear + Inactivity =

Some Clinical prediction rules have clinical sensibility

- Pain during walking/standing, pain relief during sitting, bilateral leg pain, leg pain worse than back pain, older age = ?
- Unilateral OA, multi-plane hip ROM loss, weakness of the hip, duration of symptoms of < 1 year, reduced gait speed = ?

Cook et al. Physiother Research International. 2011

Clinical prediction rules have been used in clinical practice and have been effective

- Canadian C-Spine Rules
- Ottawa Ankle Rules
- Wells Criteria for DVT
- PERC score for reducing mortality

Good Clinical prediction rules typically outperform paternalistic care

- Paternalistic care
- Computerized decision typically beats the clinician, especially when the outcome is complex
- Not you? That’s paternalistic thinking!

Cons of Clinical Prediction Rules
Most CPRs are Derivation Only

- Development of the rule—establishing the independent and combined effect of explanatory variables (or clinical predictors), which can be symptoms, signs, or diagnostic tests
- Generated through some form of regression analysis

(Reminder) All derived prescriptive rules are a reflection of treatment effect

- May be prognostic
- May be reflective of a bogus outcome measure
- May be spurious (Left Hip replacement)

Sample is not Generalizable

- Inclusion criteria is too specific (18 to 60 but mean in the low thirties, ODI >20)
- Population is dissimilar to clinical population routinely seen

More?

- Most use tools that have low inter-rater reliability
- Most do not report accuracy
- Most have very wide confidence intervals
- Many are "so-what" studies

Sample Size is too Small

Lumbopelvic Manipulation for the Treatment of Patients With Patellofemoral Pain Syndrome: Development of a Clinical Prediction Rule

- N=49….~27 variables

Regression Modeling with Small Sample Sizes is not Robust

- Predictive Modeling (CPRs) are exceptionally Fragile with Prescriptive Studies

FRAGILE
Many Lack Clinical Sensibility

• Left hip for total hip replacement?
• Bilateral involvement for benefit of manipulation of the cervical spine
• Low back pain leads to poorer prognosis for shoulder disorders

Getting Published does not mean it is valid

• There are 3 million papers published each year, not all of them are good
• The “peer review” system has problems
• Self-serving cliques of reviewers, who are more likely to review each others’ grant proposals and publications favorably
• Some journals are fixated on these studies
• Journals need papers; they are more flexible

The CPR Fails to Capture all Those who Benefit

• CPRs only capture a percentage of people who would benefit or would be diagnosed by the condition (tend to be specific, not sensitive)
• Thus, with a sensitivity of 63%, the Manip CPR captured 63 of the 100 subjects who benefitted from manipulation. 37% were missed by the CPR

CPRs are Used as clinical decision making models

- CPR's are NOT clinical decision making models
- CPR's represent a finding within the clinical decision making process
- CPRs are usually very specific and should be used in context with other findings and near the end of the examination

Prescriptive CPRs

- Prescriptive CPRs are more difficult to design and publish
- Are more difficult to find significance because the outcome measure is malleable (and different among studies)
- Frequently inappropriately derived (single arm studies), and the results are prognostic, versus prescriptive
- Bottom Line: There is trouble here.

The Outcome Measure is Malleable

- OMERACT-OARSI Criteria
- PASS (Patient Acceptable Symptom State)
- GRoC (change of 5)
- No Surgery (versus went to surgery)
- MCID's
- Results suggested that different “CPRs” were developed from same sample using different outcomes measures!!!
When Different Outcomes are Used

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables</th>
<th>Individual P value</th>
<th>Coefficient</th>
<th>Model F value</th>
<th>Model Adjusted R²</th>
<th>Model P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODI Change Score</td>
<td>Lower initial ODI</td>
<td><0.01</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mini CPR</td>
<td>0.04</td>
<td>-2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPS compliance</td>
<td>0.07</td>
<td>-3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorter duration sx</td>
<td>0.01</td>
<td>-2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Younger age</td>
<td><0.01</td>
<td>-3.6</td>
<td>24.0</td>
<td>46.2</td>
<td>P<0.01</td>
</tr>
<tr>
<td>NPRS Change Score</td>
<td>Lower initial NPRS</td>
<td><0.01</td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower initial ODI</td>
<td>0.01</td>
<td>-2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mini CPR</td>
<td><0.01</td>
<td>-3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorter duration sx</td>
<td><0.01</td>
<td>-3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPS compliance</td>
<td>0.06</td>
<td>-2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnosis</td>
<td><0.01</td>
<td>-2.6</td>
<td>46.6</td>
<td>67</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Total Visits</td>
<td>Mini CPR</td>
<td><0.01</td>
<td>2.8</td>
<td>8.3</td>
<td>0.5</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Rate of Recovery</td>
<td>Lower initial NPRS</td>
<td>0.09</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mini CPR</td>
<td>0.01</td>
<td>-2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No irritability</td>
<td>0.05</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total (100%)</td>
<td><0.01</td>
<td>-3.8</td>
<td>7.7</td>
<td>16.7</td>
<td>P<0.01</td>
</tr>
</tbody>
</table>

Different rules for different outcomes measures.
Hope we pick the right one!!

When Different MCI D’s are Used

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables</th>
<th>Individual P value</th>
<th>Odds Ratio (95% CI)</th>
<th>Nagelkerke R²</th>
<th>Wald Statistic</th>
<th>% Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR 1</td>
<td>No CPR</td>
<td>0.901</td>
<td>2.056 (1.261-3.356)</td>
<td>0.11</td>
<td>2.491</td>
<td>57.1%</td>
</tr>
<tr>
<td>CPR 2</td>
<td>Change</td>
<td>Change</td>
<td>0.91</td>
<td>1.893 (1.044-3.409)</td>
<td>0.47</td>
<td>3.577</td>
</tr>
<tr>
<td>CPR 3</td>
<td>Learv1</td>
<td>Learv1</td>
<td>0.34</td>
<td>0.569 (0.352-0.911)</td>
<td>0.16</td>
<td>0.485</td>
</tr>
<tr>
<td>CPR 4</td>
<td>Learv2</td>
<td>Learv2</td>
<td>0.96</td>
<td>1.043 (0.901-1.201)</td>
<td>0.20</td>
<td>1.178</td>
</tr>
<tr>
<td>CPR 5</td>
<td>Learv3</td>
<td>Learv3</td>
<td>0.31</td>
<td>0.437 (0.259-0.726)</td>
<td>0.09</td>
<td>0.457</td>
</tr>
<tr>
<td>CPR 6</td>
<td>Learv4</td>
<td>Learv4</td>
<td>0.81</td>
<td>0.997 (0.813-1.206)</td>
<td>0.67</td>
<td>2.317</td>
</tr>
</tbody>
</table>

Prescriptive Concerns

- Some (Beattie and Nelson 2006; Chaitow, 2010) have expressed concern regarding the indiscriminate use of CPRs and the potential undermining of clinical reasoning during the care of a patient.

We didn’t find that

Figure 1: Trend Line involving those who Manipulate and Either Use or Don’t Use the Clinical Prediction Rule, for Each Scenario (as percentages of those who would manipulate).

Decision Making

- There are no situations in which one single decision point answers the care questions for the patient.
- Decisions have multiple trigger or “fork” points.
- 1 CPR meets only 1 fork point.

“Statistical predictions do not form a clinical decision, but instead, inform a clinical decision.”

Thank You